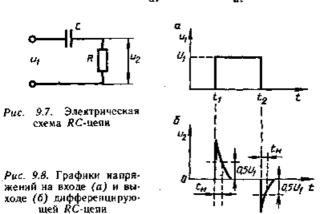
9.3. ФОРМИРОВАНИЕ ИМПУЛЬСОВ **РС**-ШЕПЯМИ

Рассмотрим прохождение прямоугольных импульсов через RC-цепь, показанную на рис. 9.7. Выходное напря-


(9.2)

$$u_2 = i_C R = C \frac{du_C}{dt} R = C R \frac{du_C}{dt}.$$

жение u_2 , выделяемое на резисторе R, определяется выра-

Из рис. 9.7 видно, что $u_c = u_1 - u_2$, поэтому $u_2 = CR \frac{d(u_1 - u_2)}{dt} = \tau \frac{d(u_1 - u_2)}{dt}$.

жением

Дифференцирующие цепи. Если $u_2 \ll u_1$, товыражение (9.2) можно записать в виде

 $u_2 \approx \tau \frac{du_1}{dt}$.

Таким образом, в *RC*-цепи, показанной на рис. 9.7, выходное напряжение пропорционально производной по времени от входного напряжения. Такую *RC*-цепь называют дифференцирующей. При поступлении прямо-

угольного импульса на вход дифференцирующей цепи (рис. 9.8, а) на ее выходе формируются остроконечные импульсы положительной и отрицательной полярности (рис. 9.8, б).

 $t_{\rm s} \approx 0.7 \tau$, где $\tau = RC$ — постоянная времени электрической цепи. Следовательно, для уменьшения длительности импульсов необходимо уменьшать постоянную времени дифференцирующей цепи. Однако на практике уменьшение постоянной времени в цепях ограничивается тем, что у

входных импульсов фронт и срез не являются строго прямоугольными. Постоянная времени дифференцирующей цепи оказывается сравнимой (или превышает) с длитель-

ния она рассчитывается по формуле

Длительность полученных на выходе остроконечных импульсов зависит от уровня, на котором она определяется. Например, на уровне 0,5 от максимального значе-

ностью фронта и среза входного импульса, поэтому дифференцирования во время действия фронта и среза входного импульса не происходит. Вследствие этого обычно выбирают постоянную времени дифференцирующей цепи не менее $0.3t_y$.

С помощью дифференцирующих цепей удается получать импульсы длительностью до $0.1\,$ мкс.

Дифференцирующие цепи применяются для формирования коротких импульсов из прямоугольных импульсов большой длительности, а также для выполнения операции дифференцирования в аналоговых ЭВМ.

разделительные цепи. Если в RC-цепи (рис. 9.7) $t \gg t_u$, то за время действия входного импульса (рис. 9,9, a) конденсатор C зарядится незначительно (рис. 9.9, δ).

Выходной импульс $u_0 = u_1 - u_2$ отличается от входного

некоторым спадом (завалом) вершины (рис. 9.9, e). После прекращения действия входного импульса конденсатор С начнет разряжаться через внутреннее сопротивление источника и резистор R. В выходном импульсе появится отрицательный выброс, убывающий по экспоненциальному закону от U_0 до 0.

Чем сильнее неравенство $\tau \gg t_{\rm H}$, тем меньше отличается выходной импульс от входного. Такую RC-цепь на-

ется выходной импульс от входного. Такую *кс*-цепь называют переходной или разделительной. Переходные *RC*-цепи применяют для связи междукаскадами или разделения каскадов по постоянному току.

Интегрирующие цепи. Если в рассмотренной на рис. 9.7 *RC*-цепи выходное напряжение снимать не с резистора *R*,

 u_{c} $=C\frac{du_c}{dt}$ следует

Рис. 9.9. Графики напряжений участках разделительной RC-цели:

конденсаторе:

Рис. 9.10. Схема интегрирующей цепи

а с конденсатора С, то из выражения для тока $i_r =$ $\frac{du_{c}}{dt} = \frac{1}{C}i_{C} = \frac{1}{C} \cdot \frac{U_{1} - u_{C}}{R} = \frac{1}{RC}(U_{1} - u_{C}).$

Интегрируя данное уравнение, получим $u_C = \frac{1}{RC} \int_{C}^{t} (U_1 - u_C) dt = \frac{1}{\tau} \int_{C}^{t} (U_1 - u_C) dt.$ "(9.3)

Если $u_C \ll U_1$, что имеет место при $u_C \ll u_2$, то уравнение (9.3) можно записать в виде $u_C \approx \frac{1}{\tau} \int U_1 dt$.

RC-цепи называются интегрирующими Для удобства снятия выходного напряжения u_2 с конденсатора С **RC**-цепь выполняют так, как показанона рис. 9.10. Условие $u_c \ll U_1$ означает, что за время действия

входного импульса конденсатор заряжается незначительно. Следовательно, для выполнения операции интегрирования необходимо соблюдение условия $au\gg t_{\scriptscriptstyle H}$.

Интегрирующие цепи применяются для получения линейно изменяющихся (пилообразных) импульсов, удлинения (увеличения длительности) импульсов, фильтрации переменной составляющей выпрямленного напряжения, выполнения математической операции интегрирования в аналоговых ЭВМ и т. п.