8.3. RC-АВТОГЕНЕРАТОРЫ

На частотах менее 50 к Γ ц вследствие увеличения требуемых значений L и C увеличиваются размеры катушек и конденсаторов и одновременно ухудшается добротность колебательного контура и стабильность его параметров. Поэтому на низких частотах вместо LC-автогенераторов обычно используют RC-автогенераторы, которые в этом диапазоне частот, особенно в нижней его части, обладают существенными преимуществами.

Частотно-зависимыми четырехполюсниками, используемыми в RC-генераторах, являются Γ -образные RC-цепи (рис. 1.20, a, 1.21, a), двойная Γ -образная цепь, или мост Вина (рис. 1.22, a), Γ -образные мосты Γ (рис. 1.23, Γ образный мост (рис. 1.24, Γ образный мост (рис. 1.24, Γ образный мост (рис. 1.25, Γ образный мост (рис. 1.26, Γ образный мост. Вина и двойной Γ -образный мост.

На рис. 8.7 a, δ показаны передаточная (AЧX) и фазочастотная характеристики моста Вина. Из рисунка видно,

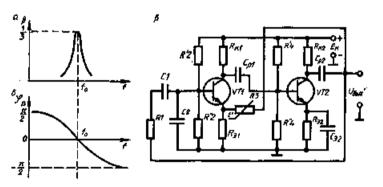


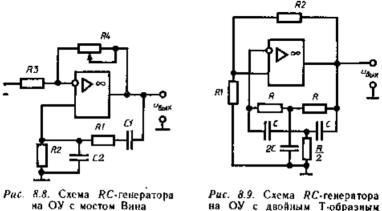
Рис. 8.7. Амплитудно-частотная (а) и фазочастотная (б) характеристики моста Вина, используемого в транзисторном RC-генераторе (в)

что на некоторой частоте f_0 , называемой частотой квазирезонанса, коэффициент передачи моста Вина оказывается вещественной величиной с максимальным значением $\beta_0=1/3$ и нулевым фазовым сдвигом $\phi_{\beta}=0^{\circ}$. Так как олин каскад усиления вносит фазовый сдвиг $\phi_{\mu}=180^{\circ}$, то для получения нулевого фазового сдвига на входе усилителя усилитель должен содержать четное число инвертирующих каскадов (рис. 8.7, ϵ). Для выполнения условия баланса амплитуд (8.2) на частоте

квазирезонанса усилитель должен иметь коэффициент усиления $K_u \geqslant 3$. Так как в двухкаскадном усилителе можно получить $K_u \gg 3$, то это позволяет ввести в усилитель, кроме положительной, отрицательную ОС, обеспечиваемую элементами R_{31} и R3. Введение в цепь ООС терморезистора R3 с отрицательным TKR позволяет осуществить стабилизацию амплитуды генерируемых колебаний. Действительно, увеличение амплитуды, вызванное различными факторами, вызывает увеличение тока через резистор R3. При этом сопротивление его уменьшается, что приводит к увеличению напряжения ООС, создаваемого на R_{31} , и уменьшению коэффициента усиления усилителя.

Обычно элементы моста Вина выбираются из условий:

$$C1 = C2 = C$$
; $R1 = R2 = R$.


Однако ввиду шунтирования резистора R2 входным сопротивлением усилителя и делителем в цепи базы транзистора VT1 условие R1 = R2 не выполняется. В результате генерируемая частота оказывается зависящей не только от значений элементов R1, R2, C1 и C2, но и от параметров усилителя, а коэффициент усиления усилителя, при котором выполняется условие баланса ампли-

RC-генератор с мостом Вина легко выполнить на интегральном ОУ, включив избирательный мост Вина между выходом и неинвертирующим входом (рис. 8.8). С помощью переменного резистора *R4* можно изменять коэффициент усиления усилителя, добиваясь наименьших нелинейных искажений генерируемых колебаний.

туд, может существенно превышать значение 3.

RC-генератор с мостом Вина легко сделать перестраиваемым по частоте. Для этого вместо резисторов R1 и R2 следует использовать сдвоенный переменный резистор либо вместо конденсаторов C/ и C2— сдвоенный блок конденсаторов переменной емкости.

В качестве избирательного четырехполюсника. RC-генератора используются также Т-образный или двойной Т-образный мост. На квазирезонансной частоте $\int_0 = \int_{\mathbf{a}} \mathbf{k} \cdot \mathbf{k} \cdot \mathbf{k}$ коэффициент передачи двойного симметричного Т-образного моста (см. рис. 1.24, δ) равен нулю. Следовательно, нулю будет равен и фазовый сдвиг на этой частоте. При включении такого моста в цепь ООС усилителя на ча-

стоте f_0 напряжение ООС равно нулю и увеличивается по мере удаления частоты от квазирезонансной в ту или другую сторону. Следовательно, для построения RC-генератора с двойным T-образным мостом мост необходимо включать в цепь ООС (рис. 8.9). С помощью делителя RIR2 создается необходимая ПОС, при которой обеспечивается генерация на частоте f_0 . Частота генерируемых колебаний определяется из выражения (8.5).

MOCTOM